Consumption of a dark roast coffee blend reduces DNA damage in humans: results from a 4-week randomised controlled study

We thank Thomas Hofmann and Roman Lang (Technical University of Munich) for NMP, trigonelline and creatinine measurements (compliance), and Lubica Prochazkova, Helena Nagyova, Edita Mrvikova and Zuzana Krchnava from Slovak Medical University for technical help.

This study has been supported by Tchibo GmbH, Hamburg, Germany.

D. Schipp is a self-employed statistician, who has been appointed and financed by Tchibo GmbH for this and other projects.

The study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

  1. Hamer M, Witte DR, Mosdøl A, Marmot MG, Brunner EJ (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. Br J Nutr 100(5):1046–1053. CrossRefPubMedGoogle Scholar
  2. Zhang W, Lopez-Garcia E, Hu FB, van Dam RM (2009) Coffee consumption and risk of cardiovascular diseases and all-cause mortality among men with type 2 diabetes. Diabetes Care 32(6):1043–1045. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bidel S, Tuomilehto J (2012) The emerging health benefits of coffee with an emphasis on type 2 diabetes and cardiovascular disease. Eur Endocrinol 9(2):99–106. CrossRefGoogle Scholar
  4. Malerba S, Turati F, Galeone C, Pelucchi C, Verga F, La Vecchia C, Tavani A (2013) A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol. CrossRefPubMedGoogle Scholar
  5. von Ruesten A, Feller S, Bergmann M, Boeing H (2013) Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur J Clin Nutr 67(4):412–419. CrossRefGoogle Scholar
  6. Ding M, Satija A, Bhupathiraju SN, Hu Y, Sun Q, Han J, Lopez-Garcia E, Willett W, van Dam RM, Hu FB (2015) Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation 132(24):2305–2315. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bakuradze T, Lang R, Hofmann T, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G, Janzowski C (2010) Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines. Mol Nutr Food Res 54(12):1734–1743. CrossRefPubMedGoogle Scholar
  8. Bichler A, Cavin C, Simic T, Chakraborty A, Ferk F, Hoelzl C, Schulte-Hermann R, Kundi M, Haidinger G, Angelis K, Knasmüller S (2007) Coffee consumption protects human lymphocytes against oxidative and 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate (Trp-P-2) induced DNA-damage: results of an experimental study with human volunteers. Food Chem Toxicol 45(8):1428–1436. CrossRefPubMedGoogle Scholar
  9. Esposito F, Morisco F, Verde V, Ritieni A, Alezio A, Caporaso N, Fogliano V (2003) Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol Ther 17(4):595–601. CrossRefPubMedGoogle Scholar
  10. Hoelzl C, Knasmüller S, Wagner K-H, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O, Desmarchelier A, Marin-Kuan M, Delatour T, Verguet C, Bezençon C, Besson A, Grathwohl D, Simic T, Kundi M, Schilter B, Cavin C (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54(12):1722–1733. CrossRefPubMedGoogle Scholar
  11. Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22(5):426–440. CrossRefPubMedGoogle Scholar
  12. Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis J-P, Albert FW, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55(5):793–797. CrossRefPubMedGoogle Scholar
  13. Bakuradze T, Parra GAM, Riedel A, Somoza V, Lang R, Dieminger N, Hofmann T, Winkler S, Hassmann U, Marko D, Schipp D, Raedle J, Bytof G, Lantz I, Stiebitz H, Richling E (2014) Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res Int 63(Part C):420–427. CrossRefGoogle Scholar
  14. Bakuradze T, Lang R, Hofmann T, Eisenbrand G, Schipp D, Galan J, Richling E (2015) Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial. Eur J Nutr 54:149–156. CrossRefPubMedGoogle Scholar
  15. Lang R, Wahl A, Stark T, Hofmann T (2011) Urinary N-methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Mol Nutr Food Res 55(11):1613–1623. CrossRefPubMedGoogle Scholar
  16. Akor-Dewu MB, El Yamani N, Bilyk O, Holtung L, Tjelle TE, Blomhoff R, Collins AR (2014) Leucocytes isolated from simply frozen whole blood can be used in human biomonitoring for DNA damage measurement with the comet assay. Cell Biochem Funct 32(3):299–302. CrossRefPubMedGoogle Scholar
  17. Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Štětina R (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151. CrossRefPubMedGoogle Scholar
  18. EFSA Panel on Dietetic Products Nutrition and Allergies (2015) Scientific opinion on the safety of caffeine. EFSA J 13(5):4102. CrossRefGoogle Scholar
  19. Valverde M, Rojas E (2009) Environmental and occupational biomonitoring using the Comet assay. Mutat Res Rev Mutat Res 681(1):93–109. CrossRefGoogle Scholar
  20. Lu Y, Morimoto K, Nakayama K (2006) Health practices and leukocyte DNA damage in Japanese hard-metal workers. Prev Med 43(2):140–144. CrossRefPubMedGoogle Scholar
  21. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J (2017) Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359:j5024. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Misík M, Hoelzl C, Wagner K-H, Cavin C, Moser B, Kundi M, Simic T, Elbling L, Kager N, Ferk F, Ehrlich V, Nersesyan A, Dusinská M, Schilter B, Knasmüller S (2010) Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res Fundam Mol Mech Mutagen 692:42–48. CrossRefGoogle Scholar
  23. Martini D, Del Bo C, Tassotti M, Riso P, Del Rio D, Brighenti F, Porrini M (2016) Coffee consumption and oxidative stress: a review of human intervention studies. Molecules 21(8):979. CrossRefGoogle Scholar
  24. Paur I, Balstad TR, Blomhoff R (2010) Degree of roasting is the main determinant of the effect of coffee on NF-kB and EpRE. J Free Radic Biol Med 48(9):1218–1227. CrossRefGoogle Scholar
  25. Shaposhnikov S, Hatzold T, Yamani NE, Stavro PM, Lorenzo Y, Dusinska M, Reus A, Pasman W, Collins A (2018) Coffee and oxidative stress: a human intervention study. Eur J Nutr 57(2):533–544. CrossRefPubMedGoogle Scholar

© Springer-Verlag GmbH Germany, part of Springer Nature 2018