Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China

1. Zhu N, Zhang D, Wang W, et al. : A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; NEJMoa2001017. 10.1056/NEJMoa2001017 [PubMed] [CrossRef] [Google Scholar]

2. Ksiazek TG, Erdman D, Goldsmith CS, et al. : A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966. 10.1056/NEJMoa030781 [PubMed] [CrossRef] [Google Scholar]

3. Zaki AM, van Boheemen S, Bestebroer TM, et al. : Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820. 10.1056/NEJMoa1211721 [PubMed] [CrossRef] [Google Scholar]

4. Stadler K, Masignani V, Eickmann M, et al. : SARS--beginning to understand a new virus. Nat Rev Microbiol. 2003;1(3):209–218. 10.1038/nrmicro775 [PubMed] [CrossRef] [Google Scholar]

5. Chan JF, Yuan S, Kok KH, et al. : A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; pii: S0140-6736(20)30154-9. 10.1016/S0140-6736(20)30154-9 [PubMed] [CrossRef] [Google Scholar]

6. Huang C, Wang Y, Li X, et al. : Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; pii: S0140-6736(20)30183-5. 10.1016/S0140-6736(20)30183-5 [PubMed] [CrossRef] [Google Scholar]

7. Cheng VCC, Wong SC, To KKW, et al. : Preparedness and proactive infection control measures against the emerging Wuhan coronavirus pneumonia in China. J Hosp Infect. 2020; pii: S0195-6701(20)30034-7. 10.1016/j.jhin.2020.01.010 [PubMed] [CrossRef] [Google Scholar]

8. Svoboda T, Henry B, Shulman L, et al. : Public health measures to control the spread of the severe acute respiratory syndrome during the outbreak in Toronto. N Engl J Med. 2004;350(23):2352–2361. 10.1056/NEJMoa032111 [PubMed] [CrossRef] [Google Scholar]

9. Fischer WA, 2nd, Weber D, Wohl DA: Personal Protective Equipment: Protecting Health Care Providers in an Ebola Outbreak. Clin Ther. 2015;37(11):2402–2410. 10.1016/j.clinthera.2015.07.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Avendano M, Derkach P, Swan S: Clinical course and management of SARS in health care workers in Toronto: a case series. CMAJ. 2003;168(13):1649–1660. [PMC free article] [PubMed] [Google Scholar]

11. Uyeki TM, Mehta AK, Davey RT, Jr, et al. : Clinical Management of Ebola Virus Disease in the United States and Europe. N Engl J Med. 2016;374(7):636–646. 10.1056/NEJMoa1504874 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Henao-Restrepo AM, Camacho A, Longini IM, et al. : Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389(10068):505–518. 10.1016/S0140-6736(16)32621-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Geisbert TW, Daddario-Dicaprio KM, Lewis MG, et al. : Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog. 2008;4(11):e1000225. 10.1371/journal.ppat.1000225 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Tortorici MA, Veesler D: Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93–116. 10.1016/bs.aivir.2019.08.002 [PubMed] [CrossRef] [Google Scholar]

15. Casadevall A, Pirofski LA: The Ebola epidemic crystallizes the potential of passive antibody therapy for infectious diseases. PLoS Pathog. 2015;11(4):e1004717. 10.1371/journal.ppat.1004717 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Shin YW, Chang KH, Hong GW, et al. : Selection of Vaccinia Virus-Neutralizing Antibody from a Phage-Display Human-Antibody Library. J Microbiol Biotechnol. 2019;29(4):651–657. 10.4014/jmb.1812.12024 [PubMed] [CrossRef] [Google Scholar]

17. Keck ZY, Wang Y, Lau P, et al. : Isolation of HCV Neutralizing Antibodies by Yeast Display. Methods Mol Biol. 2019;1911:395–419. 10.1007/978-1-4939-8976-8_27 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Elshabrawy HA, Coughlin MM, Baker SC, et al. : Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One. 2012;7(11):e50366. 10.1371/journal.pone.0050366 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Tripathi NK, Shrivastava A: Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol. 2019;7:420. 10.3389/fbioe.2019.00420 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Schmidt R, Beltzig LC, Sawatsky B, et al. : Generation of therapeutic antisera for emerging viral infections. NPJ Vaccines. 2018;3:42–10. 10.1038/s41541-018-0082-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Jahrling PB, Geisbert J, Swearengen JR, et al. : Passive immunization of Ebola virus-infected cynomolgus monkeys with immunoglobulin from hyperimmune horses. Arch Virol Suppl. 1996;11:135–140. 10.1007/978-3-7091-7482-1_12 [PubMed] [CrossRef] [Google Scholar]

22. Goto M, Kuribayashi K, Umemori Y, et al. : High prevalence of human anti-mouse antibodies in the serum of colorectal cancer patients. Anticancer Res. 2010;30(10):4353–4356. [PubMed] [Google Scholar]

23. Qureshi A, Tantray VG, Kirmani AR, et al. : A review on current status of antiviral siRNA. Rev Med Virol. 2018;28(4):e1976. 10.1002/rmv.1976 [PubMed] [CrossRef] [Google Scholar]

24. Youngren-Ortiz SR, Gandhi NS, España-Serrano L, et al. : Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. Kona. 2016;33:63–85. 10.14356/kona.2016014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Dunning J, Sahr F, Rojek A, et al. : Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial. PLoS Med. 2016;13(4):e1001997. 10.1371/journal.pmed.1001997 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Thi EP, Mire CE, Lee AC, et al. : Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521(7552):362–365. 10.1038/nature14442 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Thi EP, Lee AC, Geisbert JB, et al. : Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nat Microbiol. 2016;1(10): 16142. 10.1038/nmicrobiol.2016.142 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Tsai CH, Lee PY, Stollar V, et al. : Antiviral therapy targeting viral polymerase. Curr Pharm Des. 2006;12(11):1339–1355. 10.2174/138161206776361156 [PubMed] [CrossRef] [Google Scholar]

29. Anderson J, Schiffer C, Lee SK, et al. : Viral protease inhibitors. Handb Exp Pharmacol. 2009;189:85–110. 10.1007/978-3-540-79086-0_4 [PubMed] [CrossRef] [Google Scholar]

30. Litterman N, Lipinski C, Ekins S: Small molecules with antiviral activity against the Ebola virus [version 1; peer review: 2 approved]. F1000Res. 2015;4:38. 10.12688/f1000research.6120.1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Dodd LE, Follmann D, Proschan M, et al. : A meta-analysis of clinical studies conducted during the West Africa Ebola virus disease outbreak confirms the need for randomized control groups. Sci Transl Med. 2019;11(520): pii: eaaw1049. 10.1126/scitranslmed.aaw1049 [PubMed] [CrossRef] [Google Scholar]

32. Chu CM, Cheng VC, Hung IF, et al. : Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252–256. 10.1136/thorax.2003.012658 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Sheahan TP, Sims AC, Leist SR, et al. : Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1): 222. 10.1038/s41467-019-13940-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Li CC, Wang XJ, Wang HR: Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug Discov Today. 2019;24(3):726–736. 10.1016/j.drudis.2019.01.018 [PubMed] [CrossRef] [Google Scholar]

35. Dyall J, Coleman CM, Hart BJ, et al. : Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885–4893. 10.1128/AAC.03036-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Mire CE, Geisbert JB, Agans KN, et al. : Passive Immunotherapy: Assessment of Convalescent Serum Against Ebola Virus Makona Infection in Nonhuman Primates. J Infect Dis. 2016;214(suppl 3):S367–S374. 10.1093/infdis/jiw333 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Marano G, Vaglio S, Pupella S, et al. : Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016;14(2):152–157. 10.2450/2015.0131-15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Kraft CS, Hewlett AL, Koepsell S, et al. : The Use of TKM-100802 and Convalescent Plasma in 2 Patients With Ebola Virus Disease in the United States. Clin Infect Dis. 2015;61(4):496–502. 10.1093/cid/civ334 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Walker LM, Burton DR: Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat Rev Immunol. 2018;18(5):297–308. 10.1038/nri.2017.148 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. PREVAIL II Writing Group, Multi-National PREVAIL II Study Team, . Davey RT, Jr, et al. : A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N Engl J Med. 2016;375(15):1448–1456. 10.1056/NEJMoa1604330 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Zhou P, Yang XL, Wang XG, et al. : Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020; 2020.01.22.914952. 10.1101/2020.01.22.914952 [CrossRef] [Google Scholar]

42. Li W, Moore MJ, Vasilieva N, et al. : Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965): 450–454. 10.1038/nature02145 [PubMed] [CrossRef] [Google Scholar]

43. Karakus U, Pohl MO, Stertz S: Breaking the convention: Sialoglycan variants, Co-receptors and Alternative Receptors for Influenza A Virus Entry. J Virol. 2019; pii: JVI.01357-19. 10.1128/JVI.01357-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Wong SK, Li W, Moore MJ, et al. : A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004;279(5): 3197–3201. 10.1074/jbc.C300520200 [PubMed] [CrossRef] [Google Scholar]

45. Arbabi-Ghahroudi M: Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front Immunol. 2017;8:1589. 10.3389/fimmu.2017.01589 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Xia C, Gautam A: Biopharma CRO industry in China: landscape and opportunities. Drug Discov Today. 2015;20(7): 794–798. 10.1016/j.drudis.2015.02.007 [PubMed] [CrossRef] [Google Scholar]

47. Du L, Kou Z, Ma C, et al. : A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS One. 2013;8(12):e81587. 10.1371/journal.pone.0081587 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Wang X, Mathieu M, Brezski RJ: IgG Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9(1): 63–73. 10.1007/s13238-017-0473-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Sondermann P, Szymkowski DE: Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr Opin Immunol. 2016;40: 78–87. 10.1016/j.coi.2016.03.005 [PubMed] [CrossRef] [Google Scholar]

50. Desmyter A, Farenc C, Mahony J, et al. : Viral infection modulation and neutralization by camelid nanobodies. Proc Natl Acad Sci U S A. 2013;110(15): E1371–9. 10.1073/pnas.1301336110 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Koch K, Kalusche S, Torres JL, et al. : Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Sci Rep. 2017;7(1):8390–15. 10.1038/s41598-017-08273-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. He Y, Zhou Y, Liu S, et al. : Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004;324(2):773–781. 10.1016/j.bbrc.2004.09.106 [PubMed] [CrossRef] [Google Scholar]

53. Gu J, Korteweg C: Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–1147. 10.2353/ajpath.2007.061088 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Kuba K, Imai Y, Rao S, et al. : A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879. 10.1038/nm1267 [PubMed] [CrossRef] [Google Scholar]

55. Sui J, Li W, Murakami A, et al. : Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004;101(8):2536–2541. 10.1073/pnas.0307140101 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Moore MJ, Dorfman T, Li W, et al. : Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J Virol. 2004;78(19):10628–10635. 10.1128/JVI.78.19.10628-10635.2004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Imai Y, Kuba K, Rao S, et al. : Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. 10.1038/nature03712 [PubMed] [CrossRef] [Google Scholar]

58. Gu H, Xie Z, Li T, et al. : Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Sci Rep. 2016;6:19840. 10.1038/srep19840 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Zou Z, Yan Y, Shu Y, et al. : Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594. 10.1038/ncomms4594 [PubMed] [CrossRef] [Google Scholar]

60. Haschke M, Schuster M, Poglitsch M, et al. : Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792. 10.1007/s40262-013-0072-7 [PubMed] [CrossRef] [Google Scholar]

61. Khan A, Benthin C, Zeno B, et al. : A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. 10.1186/s13054-017-1823-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Li F, Li W, Farzan M, et al. : Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–1868. 10.1126/science.1116480 [PubMed] [CrossRef] [Google Scholar]

63. Liu P, Wysocki J, Souma T, et al. : Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int. 2018;94(1):114–125. 10.1016/j.kint.2018.01.029 [PubMed] [CrossRef] [Google Scholar]

64. Yasui F, Kohara M, Kitabatake M, et al. : Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus. Virology. 2014;454–455:157–168. 10.1016/j.virol.2014.02.005 [PubMed] [CrossRef] [Google Scholar]

65. Glowacka I, Bertram S, Herzog P, et al. : Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2010;84(2):1198–1205. 10.1128/JVI.01248-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Li W, Zhang C, Sui J, et al. : Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634–1643. 10.1038/sj.emboj.7600640 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Chamow SM, Duliege AM, Ammann A, et al. : CD4 immunoadhesins in anti-HIV therapy: new developments. Int J Cancer Suppl. 1992;7:69–72. [PubMed] [Google Scholar]

68. Shearer WT, Israel RJ, Starr S, et al. : Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis. 2000;182(6):1774–1779. 10.1086/317622 [PubMed] [CrossRef] [Google Scholar]

69. Jacobson JM, Lowy I, Fletcher CV, et al. : Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis. 2000;182(1):326–329. 10.1086/315698 [PubMed] [CrossRef] [Google Scholar]

70. Gardner MR, Kattenhorn LM, Kondur HR, et al. : AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature. 2015;519(7541):87–91. 10.1038/nature14264 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Gardner MR, Fellinger CH, Kattenhorn LM, et al. : AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Sci Transl Med. 2019;11(502): pii: eaau5409. 10.1126/scitranslmed.aau5409 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Shao Z, Shrestha K, Borowski AG, et al. : Increasing serum soluble angiotensin-converting enzyme 2 activity after intensive medical therapy is associated with better prognosis in acute decompensated heart failure. J Card Fail. 2013;19(9):605–610. 10.1016/j.cardfail.2013.06.296 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Wan Y, Shang J, Sun S, et al. : Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2019; pii: JVI.02015-19. 10.1128/JVI.02015-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Raj VS, Mou H, Smits SL, et al. : Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–254. 10.1038/nature12005 [PubMed] [CrossRef] [Google Scholar]